Какие вещества используются для получения фенола. Получение, химические свойства и применение фенола. Сплавление арилсульфонатов со щелочью

Фенолы — органические вещества,молекулы которых содержат радикал фенил,связанный с одной или несколькими гидроксогруппами. Так же как и спирты, фенолы классифицируют по атомности, т.е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

Многоатомные фенолы содержат в молекулах более одной гидроксильной группы:

Существуют и многоатомные фенолы, содержащие три и более гидроксильных групп в бензольном кольце.

Познакомимся поподробнее со строением и свойствами простейшего представителя этого класса- фенолом С 6 Н 5 ОН. Название этого вещества и легло в основу в основу названия всего касса — фенолы.

Физические свойства фенола

Фенол-твердое, бесцветное кристаллическое вещества, t°плавления=43°С, t°кипения=181°С, с резким характерным запахом.Ядовит.Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой.При попадании на кожу он вызывает ожоги,поэтому с фенолом нужно обращаться очень осторожно!

Химические свойства фенола

Фенолы в большинстве реакций по связи О–Н активнее , поскольку эта связь более полярна за счет смещения электронной плотности от атома кислорода в сторону бензольного кольца (участие неподеленной электронной пары атома кислорода в системе p-сопряжения). Кислотность фенолов значительно выше, чем спиртов. Для фенолов реакции разрыва связи С-О не характерны, поскольку атом кислорода прочно связан с атомом углерода бензольного кольца за счет участия своей неподеленной электронной пары в системе сопряжения. Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы, но и в большей реакционной способности бензольного ядра. Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно, в орто- и пара-положениях ( ОН-группы)

Кислотные свойства фенола

Атом водорода гидроксильной группы обладает кислотным характером. Т.к. кислотные свойства у фенола выражены сильнее, чем у воды и спиртов, то фенол реагирует не только с щелочными металлами, но и со щелочами с образованием фенолятов:

Кислотность фенолов зависит от природы заместителей (донор или акцептор электронной плотности), положения относительно ОН-группы и от количества заместителей. Наибольшее влияние на ОН-кислотность фенолов оказывают группы, расположенные в орто- и пара-положениях. Доноры увеличивают прочность связи О-Н (тем самым уменьшая подвижность водорода и кислотные свойства), акцепторы уменьшают прочность связи О-Н, при этом кислотность возрастает:

Однако кислотные свойства у фенола выражены слабее, чем у неорганический и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раз меньше,чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол.

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола:


Качественная реакция на фенол

Фенол реагирует с хлоридом железа (3) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.Эта реакция позволяет обнаруживать его даже в очень ограниченных количествах.Другие фенолы,содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа(3).

Реакции бензольного кольца фенола

Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.

  1. Бромирование фенола. В отличие от бензола для бромирования фенола не требуется добавление катализатора (бромид железа(3)). Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и пара- положения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола.

Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола:

Эта реакция, так же как и реакция с хлоридом железа(3), служит для качественного обнаружения фенола .

2. Нитрирование фенола также происходит легче, чем нитрирование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и паро изомеров нитрофенола:

При использовании концентрированной азотной кислоты образуется 2,4,6, тринитритфенол-пикриновая кислота, взрывчатое вещество:

3. Гидрирование ароматического ядра фенола в присутствии катализатора проходит легко:

4. Поликонденсация фенола с альдегидами, в частности, с формальдегидом происходит с образованием продуктов реакции — фенолформальдегидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом можно описать схемой:

В молекуле димера сохраняются «подвижные» атомы водорода, а значит,возможно дальнейшее продолжение реакции при достаточном количестве реагентов:

Реакция поликонденсаци, т.е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта(воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

Образование линейных молекул происходит при обычной температуре. Проведение этой же реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворим в воде.В результате нагревания фенолформальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимера на основе фенолформальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению,действию воды, щелочей, кислот.Они обладают высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин,полимерную основу печатных плат для радиоприборов. Клеи на основе фенолформальдегидных смол способны надежно соединять детали самой различной природы,сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе.Таким образом, фенол и продукты на его основе находят широкое применение.

Применение фенолов

Фенол — твердое вещество, с характерным запахом, вызывает ожоги при попадании на кожу. Ядовит. Растворяется в воде, его раствор называют карболовой кислотой (антисептик). Она была первым антисептиком введенным в хирургию. Широко используется для производства пластмасс, лекарственных средств (салициловая кислота и ее производные), красителей, взрывчатых веществ.

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Фенол представляет собой бесцветное вещество кристаллического строения с весьма специфическим запахом. Данная субстанция достаточно широко используется в производстве различных красителей, пластмасс, разнообразных синтетических волокон (в основном капрона). До развития нефтехимической отрасли получение фенола осуществлялось исключительно из каменноугольных смол. Конечно же, этот способ был не в состоянии покрыть все потребности бурно развивающейся промышленности в феноле, который сейчас стал важным компонентом едва ли не всех окружающих нас предметов.

Фенол, получение которого стало насущной необходимостью в связи с появлением чрезвычайно широкого спектра новых материалов и веществ, неотъемлемым ингредиентом которых он является, используется в процессе синтеза А она, в свою очередь, является важным компонентом фенопластов. Также большое количество фенола перерабатывается в циклогексанол, необходимый для изготовления в промышленных масштабах.

Еще из важных сфер можно выделить производство смеси креозолов, которую синтезируют в креозолформадельгидную смолу, используемую для изготовления множества медицинских препаратов, антисептиков и антиоксидантов. Поэтому сегодня получение фенола в больших количествах является важной задачей нефтехимии. Уже разработано немало методов, позволяющих производить это вещество в достаточных объемах. Остановимся на основных из них.

Наиболее старым и проверенным методом является способ щелочного плавления, который характеризуется большим расходом серной кислоты для и каустика с последующим сплавлением их в бензолсульфонатриевую соль, из которой непосредственно и выделяется данное вещество. Получение фенола методом хлорирования бензола с последующим омылением хлорбензола рентабельно только в случае наличия большого количества дешевой электроэнергии, необходимой для производства каустика и хлора. Главные недостатки данной методики - необходимость создания высокого давления (не менее трехсот атмосфер) и чрезвычайно значительная степень коррозии аппаратуры.

Более современным методом является получение фенола путем разложения гидроперекиси изопропилбензола. Правда, схема выделения требуемого вещества здесь довольно сложна, поскольку предусматривает предварительное производство гидроперекиси способом алкилирования бензола раствором пропилена. Далее технологией предусматривается окисление получившегося изопропилбензола воздушной смесью до образования гидроперекиси. В качестве положительного фактора данной методики можно отметить получение параллельно с фенолом еще одного важного вещества - ацетона.

Существует также методика выделения фенола из коксовых и полукоксовых смол твердых топливных материалов. Такая процедура необходима не только для получения ценного фенола, но также для повышения качества различных углеводородных продуктов. Одним из свойств фенола является быстрая окисляемость, что приводит к ускоренному старению масла и к образованию в нем вязких смолоподобных фракций.

Но самым современным методом и новейшим достижением нефтехимической отрасли является получение фенола из бензола напрямую путем окисления его Весь процесс производится в специальном адиабатическом реакторе, в котором находится цеолитсодержащий катализатор. Исходную закись азота получают окислением аммиака воздухом или выделением из Точнее, из ее побочных продуктов, образовывающихся в процессе синтеза. Данная технология способна обеспечить получение высокочистого фенола с минимальным суммарным содержанием примесей.


а) Из метана при нагревании можно получит ацетилен:

В присутствии катализатора ацетилен превращается в бензол (реакция тримеризации):


Фенол из бензола можно получить в две стадии. Бензол реагирует с хлором в присутствии хлорида железа, при этом образуется хлорбензол:


При действии на хлорбензол щелочи при высокой температуре происхо дит замещение атома хлора на гидроксильную группу и получается фенол:


При действии на фенол брома образуется 2,4,6-трибромфенол:


б) Этан из метана можно получить в две стации. При хлорировании метана образуется хлорметан. При хлорировании метана на свету образуется хлорметан:

При взаимодействии хлорметана с натрием образуется этан (реакция Вюрца):

Пропан из этана также можно получить в две стадии. При хлорировании этана образуется хлорэтан:

При реакции хлорэтана с хлорметаном в присутствии натрия образуется пропан:

Из пропана в две стадии можно получить гексан. При хлорировании пропана образуется смесь изомеров - 1-хлорпропана и 2-хлорпропана. Изомеры имеют разные температуры кипения и их можно разделить перегонкой.

При взаимодействии 1-хлорпропана с натрием образуется гексан:

При дегидрировании гексана над катализатором образуется бензол:


Из бензола можно в три стадии получить пикриновую кислоту (2,4,6-тринитрофенол). При реакции бензола с хлором в присутствии хлорида железа образуется хлорбензол.

Способы получения />.

1 . Получение из галогенбензолов. При нагревании хлорбензола и гидроксида натрия под давлением получают фенолят натрия, при дальнейшей обработке которого кислотой образуется фенол:

С 6 Н 5 ― С l + 2 NaOH C 6 H 5 ― ONa + NaCl + Н 2 О.

2. При каталитическом окислении изопропилбензола (кумола) кислородом воздуха образуются фенол и ацетон:

(1)

Это - основной промышленный способ получения фенола.

3. Получение из ароматических сульфокислот. Реакция про­водится при сплавлении сульфокислот с щелочами. Первоначально образующиеся феноксиды обрабатывают сильными кислотами для получения свободных фенолов. Метод обычно применяют для получения многоатомных фенолов:

Химические свойства />. В фенолах p -орбиталь атома кислорода образует с ароматическим кольцом единую p -систему. Вследствие такого взаимодействия электронная плотность у ато­ма кислорода уменьшается, а в бензольном кольце повышается. Полярность связи О-Н увеличивается, и водород ОН-группы становится более реакционноспособным и легко замещается на металл даже при действии щелочей (в отличие от предельных одноатомных спиртов).

1. Кислотность фенола существенно выше, чем у предельных спиртов; он реагирует как с щелочными металлами:

С 6 Н 5 ОН + Na C 6 H 5 ONa + 1/2 H 2 ,

так и с их гидроксидами (отсюда старинное название "карболовая кислота"):

С 6 Н 5 ОН + NaOH C 6 H 5 ONa + Н 2 О.

Фенол, однако, является очень слабой кислотой. При пропускании через раствор фенолятов углекислого или сернистого газов выделяется фенол; такая реакция доказывает, что фенол - более слабая кислота, чем угольная и сернистая:

C 6 H 5 ONa + СО 2 + Н 2 О → С 6 Н 5 ОН + NaHCO 3 .

Кислотные свойства фенолов ослабляются при введении в кольцо заместителей I рода и усиливаются при введении заместителей II рода.

2. Образование сложных эфиров. В отличие от спиртов, фенолы не образуют сложных эфиров при действии на них карбоновых кислот; для этого используются хлорангидриды кислот:

С 6 Н 5 ОН + СН 3 ― CO ― Cl → С 6 Н 5 ― О― СО― СН 3 + HCl .

3. Реакции электрофильного замещения в феноле протекают значительно легче, чем в ароматических углеводородах. Поскольку ОН группа является ориентантом I рода, то в молекуле фенола увеличивается реакционная способность бензольного кольца в орто- и пара-положениях (при галогенировании, нитровании, поликонденсации и т.д.). Так, при действии бромной воды на фенол три атома водорода замещаются на бром, и образуется осадок 2,4,6-трибромфенола:

(2)

Это - качественная реакция на фенол.

При нитровании фенола концентрированной азотной кислотой три атома водорода замещаются на нитрогруппу, и образуется 2,4,6-тринитрофенол (пикриновая кислота):

При нагревании фенола с формальдегидом в присутствии кислотных или основных катализаторов происходит реакция поли­конденсации, и образуется фенолформальдегидная смола - высокомолекулярное соединение с разветвленной структурой типа:

4. Окисление. Фенолы легко окисляются даже под действием кислорода воздуха. Так, при стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При энергичном окислении фенола хромовой смесью основным продуктом окисления является хинон. Двухатомные фенолы окисляются еще легче. При окислении гидрохинона также образуется хинон:

(3)

В заключение отметим, что для идентификации фенола очень часто используется его реакция с раствором FeCl 3 ; при этом образуется комплексный ион фиолетового цвета. Наряду с реакцией (2), это - качественная реакция на обнаружение фенола.

Применение . Фенол используют как полупродукт при полу­чении фенолформальдегидных смол, синтетических волокон, красителей, лекарственных средств и многих других ценных веществ. Пикриновую кислоту применяют в промышленности в качестве взрывчатого вещества. Крезолы используют как вещества с сильным дезинфицирующим действием./>

Похожие статьи

© 2024 nsbpodolsk.ru. Все для школьников и студентов.